
www.manaraa.com

Designing File Systems for Digital Video and Audio

P. Venkat Rangan and Harrick M. Vin

Multimedia Laboratory

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0114

Abstract

We address the unique requirements of a multimedia
file system such as continuous storage and retrieval of

media, maintenance of synchronization between multi-

ple media streams, and efficient manipulation of huge

media objects. We present a model that relates disk

and device characteristics to the recording rate, and de-

rive storage granularity and scatten’ng parameters that

guarantee continuous access. In order for the file sys-

tem to support multiple concurrent requests, we develop

admission control algorithms for determining whether a

new request can be accepted without violating the real-

time constraints of any of the requests.

We define a strand as an immutable sequence of

continuously recorded media samples, and then present

a multimedia rope abstraction which is a collection of in-

dividual media strands tied together by synchronization

information. We devise operations for efficient manipu-

lation of multi-stranded ropes, and develop an algorithm

for maintaining the scattering parameter during editing

so as to guarantee continuous playback of edited ropes.

We have implemented a prototype multimedia file

system, which serves as a testbed for experimenting

with policies and algorithms for multimedia storage. We

present our initial experiences with using the file system.

This work was supported by the IBM Corporation, the NSF Re-

search Initiation Award No. NCR-9009757, Xerox Corp., UVC

Corp., Compaq Corp., Starlight Networks Inc., NCR Corp., and

the University of California MICRO program.
,–
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fea

and/or specific permission.

e 1991 ACM 0-89791-447-3/91 1000910081...$1.50

1 Introduction

1.1 Motivation

Future advances in networking and storage [2,3] will

make it feasible for distributed systems to support mul-

timedia services such as video and audio mail, news

distribution, advertisement, and entertainment [11]. In

this paper, we develop mechanisms for multimedia file

storage and access, thereby taking us a step closer to

multimedia computer systems.

Digital video and audio differ fundamentally from

text in three important ways with regard to their storage

requirements:

●

●

Multiple data streams:

A multimedia object consists of three components:

audio, video, and text. Generally, these three com-

ponents of a multimedia object are separated at

the input and they arrive at the file system as

three different streams. Similarly during retrieval,

these streams are routed to three different output

devices. Storing these media together may entail

additional processing for combining them during

storage, and for separating them during retrieval.

The complexity of such processing can be signifi-

cant if different encodings are used for the three

media. On the other hand, if the three media are

stored separately, the file system must explicitly

maintain temporal relationships among the media

so as to ensure synchronization between them dur-

ing retrieval.

Continuous recording and retrieval of data streams:

Recording and playback of motion video and audio

are continuous operations. The file system must

organize multimedia data on disk so as to guaran-
tee that their storage and retrieval proceed at their

respective real-time rates.

81

www.manaraa.com

● Large file size:

Video and audio data have very large storage space

requirements. If the file system is to act as a ba-

sis for supporting media services such as document

editing, mail, distribution of news and entertain-

ment, etc., it must provide mechanisms for manip-

ulating and sharing stored data. For these mech-

anisms to be efficient on large sizes of multimedia

data, they must minimize copying of data on the

disk.

The design and implementation of a file system that

addresses the above requirements of multimedia data is

the subject matter of this paper.

1.2 Relation to Previous Work

Most of the multimedia file systems that are being built

or proposed have focused on storage of still images

and/or audio. The Diamond system [13], the Muse

system of Gibbs et al [4], and the optical disk-based

system of Ooi et al [10] are targeted towards storage

and exchange of documents cent aining images. The

Sun Multimedia File System [8], which consists of a

collection of library functions built on top of Unix, is

a storage scheme in which audio samples are stored aa

Unix files and shared among workstations using Sun’s

Network File System (NFS). The VOX audio server [1]

also supports audio storage. Work by Mackay and Dav-

enport [7] supports video filing, but video is stored in

an amdog form on consumer electronic devices. There

has not been much work on storage systems for digital

motion video. The Cambridge Pandora project [5] and

Matsushita’s Real Time Storage System [9] have begun

investigating low level storage mechanisms for digital

video.

Terry and Swinehart of the Etherphone project [12]

present a powerful voice file system, in which sequences

of intervals of voice samples form a voice rope. They

present mechanisms for cop y-free manipulation of voice,

and a sophisticated reference count mechanism called

interests for performing garbage collect ion of unrefer-

enced voice. Our experience with the Etherphone sys-

tem has been the initial motivation for the work re-

ported in this paper.

1.3 Research contributions of this paper

Digitization of motion video yields a sequence of frames,
and that of audio yields a sequence of samples. We

call a sequence of continuously recorded video frames

or audio samples a Strand. Each strand is organized

on the disk in terms of blocks. The questions that we

first attempt to answer in this paper are (1) how many

video frames and/or audio samples are stored in each

block (i.e., the storage granularity), and (2) how are

the blocks constituting a media strand separated on the

disk (i.e., the scattering parameter). In order to answer

these questions, we relate disk and device characteris-

tics (such as, disk read/write latency, and video cap-

ture/display times) to the recording rate, and derive

the storage granularity and scattering parameter that

result in continuous retrieval.

To enable the file system to support multiple con-

current storage/retrieval requests, we develop an admis-

sion control algorithm for determining whether a new

request can be accepted without violating the real-time

constraints of any of the requests.

A file system must not only store video and audio

data, but also preserve temporal relationships among

them. We present an abstraction called a Multimedia

Rope, which is a collection of individual media strands
tied together by synchronization information. (The

term rope is derived from the Etherphone project), We

devise operations for efficient manipulation of multi-

stranded ropes, and develop an algorithm for maintain-

ing the scattering parameter (so aa to guarantee conti-

nuity of playback) without significant copying of data

during insert ion and deletion operations.

Using the above results, we have implemented a file

system on an environment of SPARCstations and PC-

ATs equipped with video compression hardware. We

present our intial experiences with using the file system.

The rest of the paper is organized as follows: Sec-

tion 2 defines the terminology used in the paper. In

Section 3, we present methods to determine the gran-

ularity and scattering parameter of media storage. In

Section 4, we define the structure of a multimedia rope,
and discuss operations for its manipulation. Section 5

describes the software architecture of the multimedia

file system that we have implemented. Finally, Section

6 summarizes the results and presents directions for fu-

ture work.

2 Preliminary Definitions and

Terminology

Frame is the basic unit of video.

Sample is the basic unit of audio,

Strand is an immutable sequence of continuously

recorded audio samples or video frames. Im-
mutability of strands is necessary to simplify the

process of garbage collection.

Block is the basic unit of disk storage. There are

two types of blocks: (1) Homogeneous blocks,

which contain data belonging to one medium, and

(2) Heterogeneous blocks, which contain data be-

longing to multiple media.

82

www.manaraa.com

Rope is a collection of multiple strands (of same or

different medium) tied together by synchronization

information.

Table 1 defines the symbols used in this paper.

Using these symbols, it can be seen that the duration

of playback of a video block (which is the same as its

recording duration) is given by ~, the total delay to

read a video block from disk is given by l& + W,

and the time to display a video block, which consists of

the time for decompression and digital-to-analog conver-

sion, is given by -~. Note that the time to display

a block must not exceed the duration of its playback.

3 Determining Granularity and

Scattering of Media Strands

A file system must divide video and audio strands into

blocks while storing them on a disk. Most existing

storage server architectures employ random allocation

of blocks on disk. In such storage servers, reserving

computational cycles to meet real time requirements is

not sufficient to support continuous retrieval of media

strands. This is because, separations between blocks

of a strand may not be constrained enough to guaran-

tee bounds on access and latency times of successive

blocks of the strand. Buffering can nullify the effects of

unconstrained variation (i.e., jitter) in separations be-

tween blocks. The average seek time per block can be

constrained by retrieving blocks in the order in which

they are encountered while spanning all the cylinders of

a disk (as opposed to the order in which they are to be

played back), and then buffering the blocks until their

playback. However, the number of blocks that need to

be retrieved out of order and buffered can be aa much as

~~, where, 1~~ is the maximum possible seek time

between blocks on two adjacent cylinders on the disk,

rzCYzis the total number of cylinders on the disk, and

l&i’ed is the desired average seek time. Constrained

block allocation, on the other hand, can yield the de-

sired average seek time while minimizing the memory

buffer requirements on media devices.

Partitioning a disk for multimedia and employing

contiguous allocation of blocks within the partition can

guarantee continuous access to blocks of a media strand,

but it is fraught with inherent problems of fragmenta-

tion and can entail enormous copying overheads dur-

ing insertions and deletions. Even the projected speeds

of future fast disk configurations are not sufficient to

ensure that unconstrained separation between blocks
(i.e., the maximum possible access and latency times) lie

within the requirements of high performance video ap-

plications. For example, with a block size of 4 Kbytes,

future disk arrays with 100 parallel heads and projected

seek and latency times of the order of 10 ms will be able

to support 0.32 Gigabits/s transfer rates in the absence

of constrained block allocation. This is inadequate for

the retrieval of even one HDTV-quality video strand

which may require data transfer rates of up to 2.5 Gi-

gabit/s. Hence, constrained block allocation for storing

media strands is not an artifact of today’s storage per-

formance, but a fundamental problem that is not likely

to be obviated by the availability of faster storage de-
vices in the near future. A common file server can,

however, integrate the functions of both a conventional

text file server and a multimedia file server by employ-

ing constrained block allocation for (real-time) media

strands, and using the gaps between successive blocks

of a media strand to store text files.

There are two questions that need to be answered

in constrained allocation of blocks of a media strand: (1)

What should the size of the blocks (i.e. the granularity)

be? and (2) What should the separation between suc-

cessive blocks (i.e. the scattering parameter) of a strand

be? The guiding factor in determining the block size

and separation is the requirement of cent inuous record-

ing and retrieval. In the remainder of this section, we

present a model that attempts to answer these ques-

tions and obtain the associated buffering requirements

for motion video which is the most demanding medium

(with regard to performance); the analysis for audio can

be carried out in a similar manner.

We make two simplifying assumptions, both of

which are reasonable in our hardware environment: (1)

the -disk write and read times are approximately equal,

and (2) the time to capture a video frame (which con-

sists of digitization and compression) and the time to

display it (which consists of decompression and digital-

to-analog conversion) are approximately equal. Hence,

the continuity requirements of retrieval and storage are
similar to each other, and in the analysis that follows,

we only consider continuous retrieval.

3.1 Continuity Requirement

For continuous retrieval of media data, it is essential
that media information be available at the display de-

vice at or before the time of its playback. We refer to

this as the ‘continuity requirement’. Whereas the dura-

tion of playback of a media block stored on the disk is

determined by the rate of recording; the time to access a

disk block depends on the level of concurrency between

disk access and video display. Disk access and video dis-

play can be purely sequential, or can be pipelined. Fur-
thermore, if disks with multiple heads are used (such as

RAIDs), multiple disk accesses can take place concur-

rently. We now analyze the sequential, pipelined, and

concurrent architectures for continuity requirements.

83

www.manaraa.com

Explanation

Audio recording rate

Video recordin~ rate

Rate of data transfer from disk

Rate of video display

Granularity of video storage

Granularity of audio storage

Size ofa video frame

Size of audio sample
Scattering parameter

Unit

samples/see

frarnes/sec

bits/see

bits/see

frames/block

samples/block

bits/frame

bits/sample

sec

Table 1: Symbols used in this paper

Sequential architectures serialize read and display

(similarly, capture and store) operations (see Fig-

ure 1). Each block is transferred from disk to a

buffer in the video device, and then displayed be-

fore initiating the transfer of the next block.

The continuity requirement is met in this case if

the sum of the time to read a block from disk and

the time to display it does not exceed the duration

of its playback. That is,

Pipelined architectures perform read and display op-

erations in parallel (see Figure 2).

If there are a minimum of two buffers on the video

device, one holding the block being transferred and

the other holding the block being displayed, the

continuity requirement is met if the time to read a

block does not exceed the duration of its playback.

That is,

(2)

Concurrent architectures perform multiple disk read

operations in parallel. Let p be the degree of con-
currency, i.e., the number of concurrent disk ac–

cesses.

If there are p buffers in the video device to hold

the p blocks being transferred simultaneously (see

3), continuity of playback will be maintained if the

time to read a block does not exceed the duration

for playback of (p – 1) blocks. Hence,

3.2 Synchronous Playback Requirement

In addition to maintaining continuity of retrieval, it is

essential that the playback of a strand proceed at ex-

actly the same rate as it was recorded. This is referred

to as synchronous playback, and can be accomplished ,

by one of two possible techniques:

Forced synchronization: Using a clocking device,

the display process can be forced to wait for ap-

propriate time before displaying each block. This

scheme entails communication overhead between

clocking and display devices, and can be performed

at the frame or block boundaries.

Automatic synchronization: The left hand sides of

Equations (1), (2), and (3) represent the effective

access time per media block. If this becomes equal

to the playback duration of a block, synchroniza-

tion becomes automatic.

3.3 Discussion

3.3.1 Strict and Average

ments

Continuity Require-

Recall that for continuous retrieval of media data, it

is essential that media data be available at the display

device at or before the time of its playback. Satisfying

this condition deterministically for each block is referred

to as ‘strict coni!inuity requirement’, and is difficult to
achieve in the presence of scheduling and seek time vari-

ations. By introducing anti-jitter delay at the beginning

of each request, we can relax the continuity require-

ments so as to satisfy it on an average. Anti-jitter delay

can be introduced by performing read-ahead of media

blocks.

3.3.2 Buffering and Read-Ahead Requirements

When strict continuity requirements are satisfied, as-

suming buffers to be of the same size as disk blocks, the

84

www.manaraa.com

1-
DiskRead Display-------------- --------- ----------- ~-.-----------~!k%w ------------ :D@ayl

Figurel: Sequential retrieval

------------------- __-!Z!!&@___Disk Read
F 1- t-

DiskRead
}

DiskRead-------. ----------- ---------------- --- ---------1-
~
Dssplay

e
‘ Display ‘ ‘Display ‘

Figure2: Pipelined retrieval

sequential, pipelined, and concurrent architectures re-
quire 1,2, andpbuffers, respectively. When continuity

requirements are satisfied over an average of k successive

blocks of a strand, in order to guarantee that the next

group ofkblocks can be retrieved from the disk within

the time required to display a previous group of k blocks

of a strand, the sequential and pipelined architectures

require a read-ahead of k blocks, whereas the concur-

rent architecture requires a read-ahead ofpk blocks (k

foreach of the pheads). In the case ofsequential and

concurrent transfers, the number of buffers required is

same as the amount of read-ahead (i.e., k and pk, re-

spectively), whereas, in the case of pipelined transfer,

the number of buffers required is twice that amount,

2k: one set of k buffers to hold the blocks being dis-

played, and another set ofk buffers tohold the blocks

being transferred from the disk, both of which occur

simultaneously.

Functions such as fast-forwarding can be supported

by satisfying continuity requirements at the fastest re-

quired display rate. Whereas fast-forwarding without

skipping frames increases both continuity and buffering

requirements, fast-forwarding with skipping increases

only the continuity requirement. However, when blocks

are displayed slower than the fastest rate (e.g., in slow

motion), continuity requirements become over-satisfied,

and retrieval of media blocks proceeds faster than their

display, leading to accumulation of media blocks in

buffers. In order to prevent unbounded accumulation,

the disk can switch to some other task after all the

buffers allocated to the retrieval of a media strand are

filled, and switch back when sufficient buffers become

empty. In order to compute the buffering needs in such

a situation, note that after the disk switches to some

other task, the disk head may have moved to a random

location, and hence may have to incur maximum seek

(and latency) time, l~j before being able to resume

the transfer of blocks of the earlier media strand. Thus,

in order to guarantee that the display does not run out

of media blocks during a switch to another task, the
disk must read ahead an additional h blocks before the

switch, given by,

where, ~ is the rate at which blocks are played back.

Thus, the number of buffers would also be increazed by

h.

3.3.3 Storing Multiple Media Strands

The analysis presented so far has considered only one

medium. There are two approaches for storing multiple

media on a disk.

●

●

Heterogeneous Blocks: Multiple media being

recorded are stored within the same block, which

may entail additional processing for combining
these media during storage, and for separating

them during retrieval. The advantage of this

scheme is that it provides implicit inter-media syn-

chronization.

Hornoaeneous Blocks: Each block contains exactly

one medium. This scheme permits the file system

to exploit the properties of each medium to inde-

pendently optimize its storage. However, the file

system must maintain explicit temporal relation-

ships among the media so as to ensure synchro-

nization between them during retrieval.

We illustrate the analysis for deriving continuity

equations for the pipelined architecture when there is

one audio and one video component in the media source.

For homogeneous blocks, the number of blocks to be

retrieved increases with the number of media. Hence, if

the duration of playback of audio block is n times that

of a video block, an audio block is retrieved from disk for

every n video blocks. Hence, the continuity requirement

becomes

On the other hand, if the duration of audio blocks is

identical to that of video blocks (i.e., n = 1), then the
continuity requirement reduces to

85

www.manaraa.com

s .,.---2%,=+ ------,*+ --.----?!%KS-*-------
,e+.,.------------------+_~

Levelof *5;;G;---------------+--::::::::::::::--------
Concurrency= 4 t --------------------- ----.-----------------,

Figure 3: Concurrent retrieval

If the audio and video blocks are scattered on the disk

such that 1~~ = O, then the continuity requirement re-

duces to that of the heterogeneous block case:

q.. * $Vj + rlaa * s.. ~ %8

k + ~d, %?(f, “ ~
(6)

\
Video+ Audio

3.3.4 Determining Granularity and Scattering

Having derived the continuity equations relating gran-

ularity y of storage (q” ~) with the scattering parameter

(~d~), we discuss the process of determining each of these

parameters for a given target environment.

Media blocks may be transferred from disk to a dis-

play device either directly to the internal buffers of the

display device, or through memory (from disk to main

memory, and then from main memory to the internal

buffers of the display device). Whereas direct transfer

is usually preferable, transfer through memory is more

suit able for heterogeneous blocks. However, transfer
through memory requires double the internal bus band-

width. Hence, we will only consider the direct transfer

approach below.

When direct transfer is used, the sizes of internal

buffers available on the display devices can be used to

determine the granularity of storage. For instance, if the

video display device contains an internal buffer of the

size of one video frame, the size of disk block can match

this size, yielding qu~ = 1. on the other hand, if the

internal buffers can store multiple frames (say ~), then
pipelined retrieval can be used by dividing the buffer

into two parts, each of size f/2, and qv$ can be chosen

anywhere in the range 1, ~/2. If the disk permits p

concurrent accesses, and the size of internal buffers is $

frames, then qv$ can be chosen anywhere in the range

1,..., f/p.

Having determined the value of granularity q.,, the

upper bound of the scattering parameter i& can be
obtained by direct substitution in the continuity equa-

tions.

3.4 Servicing Multiple Requests

In practice, a file server hss to process requests from sev-

eral clients simultaneously. Given a maximum rate of

disk data transfer, the file system can only accept a lim-

ited number of requests without violating the continuity

requirements of any of the requests. In this section, we

formulate this resource allocation problem, and present

an admission control algorithm for determining whether

to accept a new request, given an existing set of requests

being serviced.

Consider a scenario in which a file server is servic-

ing n active media storage/retrieval requests. In order

to service multiple requests simultaneously, the file sys-

tem proceeds in rounds. In each round, it multiplexes

among the media block transfers of the n requests, Let

ki, for i c [1, n], be the number of consecutive blocks

retrieved for ith request before switching to the next re-

quest. Let q~,,rI~~, r&, and ??~r,~~r,72& be the
granularities, and recording rates, respectively, of the

strands corresponding to the n requests.

When the file server switches from one request to

another, it may entail an overhead of up to the maxi-

mum disk seek time to move from a block in the first

strand to a block of the second strand (since there is no

guarantee on the relative positions of two strands be-

longing to two requests). The total time spent servicing

ith request in each round can be divided into two parts:

1. 6:: The overhead of switching from the previous

request to the ith request, and then transferring

the first block of ith request.

(7)

2. 0:: The time to transfer remaining (ki – 1) blocks

of t hia request in this round.

Hence, the total time spent servicing ith request in a

round is

Oi=e:+ef (9)

The total time spent servicing one round of all the n

requests is

The continuity requirement for each of the requests can

be satisfied if and only if the service time per round does

86

www.manaraa.com

not exceed the minimum of the playback durations of

all the requests. That is,

&

I
Feasible

spa

k

1

n k,-1 . .

x x(%+ ~) s ,&fil(~~ * *) (Ii) .
1=1 j=l UT

‘— I’@

Thus, the file system can service all the n requests

simultaneously if and only if k 1, k2, ..., k~ can be deter-

mined such that Equation (11) is satisfied. Determina-

tion of kl, kz, k~ in this most general formulation is

beyond the scope of this paper. We make the following

simpli~ing assumptions and develop an algorithm for

admission control:

Figure 4: Variation of the number of blocks (k) with
● The values of all ki’s are identical. That is, kl =

kz = ... =k. =k.
respect to the number of requests (n)

● We assume that
Figure 4 shows the variation of k with respect to n.

. .

i(’;:d:’) ~ .* (“~~;~g)

Since k must be non-negative, the value of k obtained

from Equation (16) is meaningful if and only if 7> n~.
j=l Thus, the maximum number of simultaneous requests

and that a file system can service is

where, individual values of the granularity, qv~, the

size of a video frame, s“ j, and the scattering param-

eter, ld~ are replaced by their respective averages in
the summation.

We define

(12)

(13)

(14)

where, for a block of average granularity, CYdefines the

maximum scattering, and ,8 defines the average scat-

tering. Note that since l~s z 1:9, it is guaranteed

that a ~ P. Under these assumptions, the continuity

requirement of Equation (11) reduces to

n*a+n*(k–1)*/3~k*~ (15)

nmaz = r;-11 (17)

It should be noted that, since the right hand side

of Equation (15) represents the playback duration of

the request with the fastest display rate, transferring k

blocks of all other requests at that rate may lead to ac-

cumulation of data in the display subsystems of these
other requests. Such an accumulation can be eliminated

by regulating the number of data blocks transferred for

each request during each service round, so as not to

overflow the buffering available in the display subsys-

tem of that request, Furthermore, larger the value of k,

larger is the startup time for a new request. Thus, it is

desirable to use the minimum possible value of k.
While servicing n requests, if the file server receives

(n+ l)th request, it must now decide whether or not to

admit the new request or not. If n + 1 ~ n~az derived

from Equation (17), it can determine the new values of

~, P, and 7, and compute kneu (from Equation (16))

necessary for satisfying (n + 1) requests.

If kn.W = kold (where, kold is the value of k when

the file system was servicing n requests), then it can

immediately admit the (n + l)th request. However, if

kn~~ # k~fd, then knew > kotd (see Figure 4), and the
file system has to begin transferring kn,~ blocks of each

of the earlier n requests, and of the new (n + l)th re-
quest. During this round, the number of blocks being

transferred is kn.~, whereas, the number of blocks avail-

able for display are those of the previous round, which is
kOld. Since, kneW > ko~d, the time spent to transfer kneW

87

www.manaraa.com

blocks may exceed the playback duration of kold blocks

of some of the requests, and a discontinuity may result

in their playback. In other words, Equation (15) guar-

antees continuity only in steady state, and not during

transitions.

In order to guarantee a smooth and transparent

transition, we propose the following modification to

Equation (15). Suppose the file system makes a tran-

sition from kOld to kn~W in steps of 1 before beginning

to service the (n + l)th request. When it performs a

transition from kol~ to (kol~ + 1), the time to transfer

(kOld + 1) blocks must not exceed the minimum play-

back duration of kold blocks. Thus, if we use the time
to transfer (k + 1) blocks instead of k in the left hand

side of Equation (15) but use k in the right hand side,

and then solve for k, a transparent transition from kOl~
to (ko~d + 1) is guaranteed. Thus, Equation (15) changes

to

n*cr+n*k*~<k*y (18)

Furthermore, since ~ ~ n~,

Hence, a transition from kold + 1 to kdd + 2, k~ld + 2 to

kOld+3, kn.tu – 1 to knew are also guaranteed. Thus,
using Equation (18) to determine k, and increasing it

in steps of 1, yields an admission control algorithm that

guarantees both transient and steady state continuity.

3.5 Layout of Blocks in a Strand

A media strand consists of a sequence of Media Blocks

(MB), whose size and separation are determined using

the techniques described in the previous sections. Each

media block cent ains either video frames, audio sam-

ples, or both. A 9-level index structure permits large

strand sizes, and random as well as concurrent access

to strands.

For each strand, the file system maintains primary

indices in a sequence of Primary Blocks (PB), each of

which contains mapping from media block numbers to

their raw disk addresses. Secondary indices, which are

point ers to Primary Blocks, are maintained in a se-

quence of Secondary Blocks (SB) . Pointers to all Sec-

ondary Blocks of a strand are stored in the Header Block

(HB). A pictorial representation and the exact data

structures of these blocks are shown in Figures 5 and

6, respectively.

4 From Media Strands to Mul-

timedia Ropes

Multimedia data includes information in various forms:

audio, video, textual, olfactory, thermal, tactile, etc.

------- ---~-:,-,-- ----------/--- -------------------------- ---.*------------
“---.,

.,#---- ~., -.

Figure 5: Organization of blocks constituting a media

strand on disk

Primary Block [

sector,

sectorCount

1

Secondary Block [

startBlock,

BlockCount,

sector,

sectorCount

1

Header Block [

frameRate,

secondary Count,

frameCount,

secondary Array

1

—position of MB on disk

- length of the MB in sectors

—start Block number
—number of Blocks in PB
—position of PB on disk

- length of PB in sectors

- Rate of recording
- Number of secondary blocks

- Total number of frames

- Array of pointers to SB

Figure 6: Structure of 3-level indices of a media strand

All the media strands constituting a piece of informa-

tion are tied together by inter-media synchronization to

form a multimedia rope (see Figure 7). A rope contains
the name of its creator, its length, access rights, and

for each of its component media strands, the strand’s

unique ID (a NULL ID indicates the absence of that me-

dia in the rope), rate of recording, granularity of stor-

age, and block-level correspondence (see Figure 8). The

block-level correspondence information is used to syn-

chronize the start of playback of all the media at strand
interval boundaries. Within each strand interval, play-

ing back at the st rand’s recording rate automatically

guarantees simultaneity of playback between the media,

Thus, the block-level correspondence and the recording

rate information together maintain inter-media synchro-

nization in multimedia ropes.

Maintenance of media synchronization information

is complicated by silence detection and elimination of

audio data. In silence elimination, if the average energy

level over a block falls below a threshold, no audio data

88

www.manaraa.com

------------------------- ------
------- -------..-,..

Synchronization Information
. . .

, ‘.
‘.(.”cl “!J””’”””””””&zi‘,

Audio
‘,

......... COmpOnat “-”””””””””Gcator

s

---------- :
.. !,:

1 AccessR&hrs :,,,”

;’, c

; ‘\ AudioRecordingRate Vi&oRewrd~gRatc
‘.,z

,.’ ;

AudioGranularity VldmGramdwity /’ ~
: -.. -- ;

‘-.. . - #

0
-------.--------------------------

Strand
Int’mall

c1

Stnmd
Jntuvall

~
Strand

~

Strand

Inten’ldz Intuva12

c1

.%and

D

Strmd

Intema13 Inkl-W13

Figure 7: A multimedia rope containing video and audio

is stored for that duration. However, after undergoing

silence elimination, audio strands no longer have lengths

proportional to their duration. Hence, explicit delay

holders have to be placed in audio strands to represent

silences. We use NULL pointers in the primary blocks of

a strand to indicate silence for the duration of a block.

In order to guarantee continuous retrieval, editing

operations on ropes such as insert and delete may re-

quire substantial copying of their component strands.

The strands can be very large in size and hence copy-

ing can consume significant amount of time and space.

In order to minimize the amount of copying involved in

editing, the multimedia file system regards strands as

immutable objects, and all editing operations on ropes

manipulate pointers to strands. Thus, an edited rope

contains a list of pointers to intervals of strands. Many

different ropes may share intervals of the same media

strand. A media strand, no part of which is referred

to by any rope, can be deleted to reclaim its storage

space. A garbage collection algorithm such as the one

presented by Terry and Swinehart in the Etherphone

system [12], which uses a reference count mechanism

called interests, can be used for this purpose. To sim-

plify the process of garbage collection of media strands

and ropes, synchronization information (which is t ypi-

cally very small in size) is copied from a rope to another

when they share strands.

4.1 Operations on Multimedia Ropes

The file system provides facilities for creating, editing,

and retrieving multimedia ropes. The exact interfaces

are as follows:

RECORD [media] + [requestID, mmRopelD]

Assuming the user haa the required access permis-

sions, the file system begins recording a new mul-

timedia rope (represented by mmRopelD) consist-

ing of new media (audio, video or both) strands.

RECORD invokes the continuity criteria obtained in

the previous section to allocate free blocks for stor-

ing the media strands. If the media being recorded

includes audio, then the file system performs silence

detection and elimination. Recording continues un-

til a subsequent STOP operation is issued.

PLAY [mmRopeID, interval, media] + requestlD

Using the above interface, a user can retrieve any

interval of any of the media of a previously recorded

multimedia rope.

STOP [requestID]

When a user issues a STOP on an earlier PLAY or

RECORD request, the retrieval or storage of the cor-

responding multimedia rope is halted.

Both RECORD and PLAY operations are non-

blocking. Hence, a user may send multiple requests to

the file system. The file system assigns a unique re-

questlD to each request, and the clients use it to refer

to the request subsequently. The file system accepts

RECORD or PLAY requests using the admission control

algorithm described in Section 3.4. Since RECORD and

PLAY are continuous operations, it is desirable to allow a

user to PAUSE (and later RESUME) a RECORD or a PLAY

request, the file system provides the user the flexibil-

ity to specify either a destructive PAUSE, which causes

resources to be deallocated during the PAUSE, or a non-

destructive PAUSE, in which resources remain allocated.

If a destructive PAUSE is specified, a subsequent RESUME

will cause the file system to perform admission control.

In addition to RECORD, PLAY, PAUSE and RESUME

operations, the file system also supports the following

utilities:

INsERT[baseRope, position, media, with Rope, withlnterval]

REPLACE[baseRope, media, baselnterval,with Rope,

with interval]

SUBSTRING[baseRope, media, interval]

coNCATE[mmf?opelDl, mmRopelD2]

DELETE[baseRope, media, interval]

The functionality of these operations are similar to

those on voice ropes in the Etherphone system. Figure

9 illustrates the withlnterval of media strands of with-
Rope, Rope2 being INsERTed at position of baseRope,

Ropel. To guarantee real-time performance and cent i-

nuit y in retrieval operation, a small amount of copying
of a strand may be necessary. We shall present an algo-

rithm to bound this copying in the next section.

Any of the editing operations maybe performed on

any subset of media constituting a rope. An interesting

89

www.manaraa.com

klultimediaRopeID - Unique ID

Oreat or – Identification of the creator

Length - Length of the rope in seconds

Play Access - List of user or group identifications

EditAccess - List of user or group identifications

List of [

VideoStrand - Unique ID of video strand

AudioStrand - Unique ID of audio strand

Length - Length of the Strands in seconds

VideoRecordingRate —Rate of recording i. t. o frames/see

Audio&cordingRate - Rate of recording audio

VideoGranularity - Granularity of video it. o. framesiblock

AudioGranularity - Granularity of audio

[AudioBlockID, VideoBlockID] – Correspondence information

List of [– Trigger information

VideoBlockID - Block number from video strand

AudioBlockID - Block number from audio strand

TextString - Text to be synchronized with audio\video

1
1

Figure 8: Data structure representing a multimedia rope

application is to merge video and audio strands recorded

separately to form a multimedia rope. For example, if

Ropee contains only an audio strand, and Ropes con-
t ains only a video strand, then the operation

REPLACE[basef?ope: Rope4, media: video,

baselnterval: [start:O, length: L3],

with Rope: Rope5, withlnterval:

[start:O, length:L3]]

replaces the non-existent video component of Rope4

with the video component of Rope5. The synchroniza-

tion information for the resulting rope is generated by

creating a correspondence between the blocks of the two

strands.

4.2 Maintenance of Scattering while

Editing

Editing operations such as insertion and deletion may

cause a multimedia rope to consist of a sequence of in-

tervals of media strands. While immutability of a me-

dia strand guarantees that their scattering parameter is

bounded and hence the continuity requirement is satis-

fied within each of its intervals} the scattering parameter

may not be bounded while moving from the last block

of one interval (of a strand) to the first block of the

next interval (which may belong to the same or another

strand). Thus, discontinuities may be felt at interval

boundaries during retrievals. These discontinuities can

be eliminated by copying a small number of blocks of

strands to which the intervals belong. We now present

an algorithm to bound the number of blocks that need

to be copied to guarantee continuity of retrieval.

Let us suppose that the result of an editing opera-

tion is a rope, one of whose components consists of in-.

tervals [a~, al] of strand S’a, and interval [b~, b~] of strand

S5. Let the maximum possible separation between two

blocks on a disk be i~~. Suppose that the scattering

parameters of strands S. and sb are not only bounded

above (from continuity requirement) but also bounded

below. Let the lower bounds on the scattering parame-

ters of S. and sb be fj,LOW~, and l~~LOWer respectively.

Similarly, let the upper bounds on the scattering pw
rameters be l~~UPPer and ‘isUpper respectively. Let

1::~
m = l:, Lower

Note that the maximum separation between the last

block of S. (which is al) and block bj+m of S5 is given

by

Al = 1~~

Also, the minimum separation between blocks bj+~/2

and bf+m of S5 is

lmax

A2=~ * l;sLower
_ ‘seek_—

2

90

www.manaraa.com

Ropel: <..., VideoStrand: VS1, AudioStrand: AS1, Length: L1,

VideoFbcordingRate: VRI, AudioRecordingRate: ARI, VideoGranularity: VG1,

AudioGranularity: AG1, ~ideoBlockID: VBI, AudioBlockID: AB1] >

Rope2 : < VideoStrand: VS2, AudioStrand: AS2, Length: L2,

VideoRecordingRate: VRZ, AudioRecordingRate: ARz, VideoGranularity: VG2,

AudioGranularity: AG2, ~ideoBlockID: VBZ., AudioBlockID: ABz] >

u

INSERT [baseRope: Ropel, position: 100, media: AudioVisual,

withRope: Rope2, withlnterval: [from: O, length: 200]]

u

Ropel : <...,

[. . . . VideoStrand: VS1, AudioStrand: AS,, Length: [start: O, Length: 100],

VideoRecordingRate: VR1, AudioRecordingRate: AR1, VideoGranularity: VG 1,

AudioGranularity: AG1, [VideoBlockID: VB1, AudioBlockID: AB1]],

[. . . . VideoStrand: VS2, AudioStrand: AS2, Length: [start: O, Length: 200],

VideoRecordingRate: VR2, AudioRecordingRate: AR2, VideoGranularity: VG2,

AudioGranularity: AG2, [VideoBlockID: VB2, AudioBlockID: AB2]],

[. . . . VideoStrand: VS1, AudioStrand: AS1, Length: [start: 100, Length: (Ll – 100)],

VideoRecordingRate: VRI, AudioRecordingRate: AR1, VideoGranularity: VGI,

AudioGranularity: AG1, [VideoBlockID: VB1, AudioBlockID: AB1]]

>

Figure 9: INSERT operation

Hence, the maximum separation bet ween block aj of S.

and block bf+mf2 of sb is given by

12;
A= A1– A2=T=31:,LOW.,

in the best case (when the disk is sparsely occupied),

and by

Al = 12; = m * !;,LOW,T

in the worst case (when the disk is densely occupied).

Thus, when the disk is sparsely occupied, by redistribut-

ing bjj bj+lj bj+z, . . .1bj+7n/z- 1 blocks equally in the re-
gion between block at of S. and block bj+m12 of $$b, we

can guarantee that the separation between al and bf

satisfies the bounds on the scattering parameter. Simi-

lar results hold when the disk is densely occupied, with

block bf +m/2_ ~ replaced by block bj+m _ 1. Thus, the

maximum number of blocks of sb required to be copied

is given by

1*”’6’b=; =(2*/;eek]
dsLower

(19)

when the disk is sparsely occupied, which degrades to:

1~:
cb=7?l=f,b 1 (20)

daLower

when the disk is densely occupied (i.e., nearly full).

Alternatively, instead of the first Cb blocks of sb,

we can redistribute the last C’. blocks of Sa, where C.

is computed in a similar manner. In practice, the ac-

tual number of blocks that needs to be copied is the

minimum of C. and cb.

It should be noted that copying creates a new

strand containing only the copied blocks because (1)

strands are immutable, and (2) creating a separate

strand aids the process of garbage collection. A unique

ID is associated with this newly generated strand, and

is used in the description of the multimedia rope created

aa a result of the editing operation.

91

www.manaraa.com

Figure 10: Copying of strands

C2.5 :0:9
Q 10

in editing operations

(R;pe3 + coNeATEIRopel, Rope2])

5 Experience with Multimedia

File Storage and Management

We have implemented a prototype testbed multimedia

file system to serve as a vehicle for experimenting with

policies and algorithms outlined in this paper. The

hardware environment and the software architecture of

our testbed system are described in the following sec-

tions:

5.1 Hardware Environment

Our Multimedia Laboratory is equipped with a number

of multimedia stations, each consisting of a Sun SPARC-

station, a PC-AT, a video camera, and a TV monitor

(see Figure 11). The SPARCstations and PC-ATS are

connected via Ethernets. The PC-ATS are equipped

with digital video and audio processing hardware pro

duced by UVC Corporation [6]. The audio hardware

digitizes audio signals at 8 KB ytes/sec. The video hard-

ware can digitize and compress motion video at real-

time rate up to NTSC broadcast with a resolution of

480x200 pixels and 12 bits of color information per pixel.

Video data is stored on the local disk attached to the

PC-AT, and displayed on a monitor attached to it. The

operation of the PC-ATS is controlled via SPARCsta-

tions. Communication between the SPARCst ations and

PCs is accomplished using TCP/IP socket library.

Note that the separation of the media-processing

functionality from the workstation provides reliability,

performance, and flexibility: audio and video processing

peripherals provide reliable media processing without

compromising workstation performance on other tasks,

and users of different workstations can use the media

processing features without making any modifications

to their workstation hardware.

5.2 Software Architecture

The software architecture of the prototype file system

was designed to serve as a testbed for experimenting

with various policies described in this paper. There

are two main functional layers: the Multimedia St or.

age Manager (MSM) and the Multimedia Rope Server

(MRs).

●

●

●

●

Multimedia storage manager: This layer is respon-

sible for physical storage of media strands on the

disk. The functionality of the MSM include: deter-

mination of granularity and scattering of strands,

enforcing admission control to service multiple re-

quests simultaneously, and maintenance of scatter-

ing while editing.

Multimedia Rope Servec This layer is responsible

for creating and maintaining the multimedia ropes.

It supports all the rope manipulation operations.

The rationale for the above layering is that:

A decoupled design of the MRS and the MSM per-

mits their execution on different hardware. In ad-

dition, it facilitates easy experimentation with vari-

ous policies in one layer without effecting the other.

The MRS implements the device-independent multi-

media rope abstraction. The MSM implements stor-

age device-specific algorithms, and hence, is hard-

ware dependent.

The MRS of our testbed system is implemented on

a SPARCstation, whereas the MSM is implemented on

a PC-AT. Applications are compiled with a rope stub

library which uses remote procedure calls to contact the

MRS. The first application we implemented that uses

the file system is a window-based editor to manipulate

multimedia ropes. Figure 12 shows a typical editing

session with the editor:

6 Concluding

6.1 Summary

Remarks

We have analyzed the unique requirements of a multi-

media file system such as continuous storage and re-

trieval of media, maintenance of synchronization be-

tween multiple media streams, and efficient manipula-

tion of huge media objects. We have presented a model

that relates disk and device characteristics (such as, disk

read/write latency, and video capture/display times) to

the recording rate, and derived storage granularity and

scattering parameters that guarantee continuous access.

The continuity requirements define an upper bound on

the scattering parameter. The algorithm that bounds

92

www.manaraa.com

; -------------------------- ----------------, ---------------------------- ---------------
I Muitkda StationI ~ Multimedia Station {

1 8
:

I
I 1 ;

t I I :

:
I
I :

I

t
I

t

;
I
I
I
1
1
I
I
1

/
ETHERNETS

. \

Figure 11: System configuration

the amount of copying necessary during editing opera-

tions define the lower bound of the scattering parame-

ter. Thus, the separation between consecutive blocks of

a strand must be chosen within these bounds.

In order to support multiple concurrent requests,

we have presented an admission control algorithm that

determines whether a new request can be accepted with-

out violating the real-time constraints of any of the re-

quests. The algorithm guarantees both transient and

steady state continuity.

We have defined strand and rope abstractions, and

have outlined an approach to maintain synchronization

information among strands. We have described editing

operations for multi-stranded ropes.

6.2 Future Work

In the storage model presented in this paper, we have

assumed that video frames and disk blocks are of fixed

size. However, variable rate compression of video (anal-

ogous to silence elimination in audio), such as differenc-

ing between frames, can result in varying but smaller

sizes of video frames, thereby yielding better bounds

for granularity and scattering. We are extending the

continuity equations to incorporate such effects of com-

pression algorithms.

Constrained scattering of blocks of a media strand

can be difficult to achieve when the disk is densely uti-

lized. When it becomes impossible to place new media

strands in such a way that their scattering bounds are

satisfied, the storage of existing media strands on the

disk may have to be reorganized. Towards this end, we

are investigating mechanisms for merging multiple me-

dia strands so as to optimize storage utilization, and

we are studying techniques by which a small number of

anamolies in scattering can be smoothed out.

The admission control algorithm that we have de-

veloped uses a round-robin servicing of requests in the

order in which they are received, and assumes maximum

separation between blocks while switching between re-

quests. As a result, the estimates of the maximum num-

ber of requests that can be simultaneously serviced are

pessimistic. We are investigating algorithms for ser-

vicing requests in the order that minimizes (possibly,

in a statistical sense) the separations between blocks,

thereby minimizing the overhead of switching between

requests, and optimizing the maximum number of re-

quests that can be serviced simultaneously.

We have implemented a prototype multimedia file

system, which serves ss a testbed for experimentation.

We are enhancing the prototype to (1) permit access

over a network, and (2) provide conversational inter-

face so that it can be accessed from within multimedia

conferences.

Acknowledgement

The initial motivation for this work comes from our in-

volvement in the Etherphone project, which was made

possible by Dan Swinehart, Doug Terry, and Polle

Zelleweger. We are thankful to Walt Burkhard, Robert

Bowdidge, Kashun Chan, Ingvar Aaberg, John Lind-

wall, Ljubisa Radivojevic, Linda Yamamoto, and Ian

Harris for their contributions towards implementing

the prototype multimedia file system, to Srinivas Ra-

manathan for helping in preparing the final version of

the paper, and to Bill Walton of Compaq, Thomss

Kaeppner, David Reed, and anonymous referees for

their insightful comments on the paper.

References

[1] S. Angebranndt, R.L. Hyde, D.H. Luong, N. Sir-

avara, and C. Schmandt. Integrating Audio and

93

www.manaraa.com

i HICCS-Z5Denm 1

[2]

[3]

[4]

[5]

[6]

[7]

[8]

@z)@9’E3
Length Of ROOW21.66 wc I

Length of rewrding
1

Ray status

Percentage Played ~

Figure 12: Window-based Multimedia Editor

Telephony in a Distributed Workstation Environ-

ment. In Proceedings of Summer 1991 Useniz Con-

ference, pages 419-436, June 1991.

P. Cochrane and M. Brain. Future Optical Fiber

Transmission Tech. and Networks. IEEE Commu-

nications Magazine, 26(11):45–60, November 1988.

J. Gait. The Optical File Cabinet: A Randorn-

Access File System for Write-Once Optical Disks.

IEEl? Computer, 21(6):11-22, June 1988.

S. Gibbs, D. Tsichritzis, A. Fitas, D. Konstan-

tas, and Y. Yeorgaroudakia. Muse: A lMulti-lMedia

Filing System. IEEE Software, 4(2):4-15, March

1987.

A. Hopper. Pandora - an experimental system for

multimedia applications. ACM Operating Systems

Review, 24(2):19-34, April 1990.

M. Leonard. Compression Chip Handles Reai-

Time Video and Audio. Electronic Design,

38(23):43-48, December 1990.

W.E. Mackay and G. Davenport. Virtual Video

Editing in Interactive Multimedia Applications.

Communications of the ACM, 32(7):802-810, July

1989.

Sun Microsystems. Multimedia File System. Soft-

ware Release, August 1989.

[9]

[10]

[11]

[12]

[13]

Y. Mori. Multimedia ReaI-Time File System.

In Matsushita Electric Industrial Co., February

1990. private communication.

B.C. Ooi, A.D. Narasimhalu, K.Y. Wang, and I.F.

Chang. Design of a Multi-Media File Server us-

ing Optical Disks for Office Applications. IEEE

Computer Society Ofice Automation Symposium,

Gaithersburg, MD, pages 157-163, April 1987.

C.S. Skrzypczak. The Intelligent Home of 2010.

IEEE Communications Magazine, 25(12):81-84,

December 1987.

D.B. Terry and D.C. Swinehart. Managing Stored

Voice in the Etherphone System. ACM Tmnsac-

tions on Computer Systems, pages 3-27, February

1988.

RH. Thomas, H.C. Forsdick, T.R. Crowley, R.W.

Schaaf, R.S. Torniinain, V.-M. Travers, and G.G.

Robertson. Diamond: A Multimedia .Message Sys-

tem Built on a Distributed Architecture. IEEE

Computer, 18(12):65-78, Dec. 1985.

94

